A specialization of object-oriented design for the fourth generation language, business environment
Lee, Roger;Leigh, William
The Journal of Computer Information Systems; Spring 1998; 38, 3; ProQuest

pg. 93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

A SPECIALIZATION OF OBJECT-ORIENTED DESIGN
FOR THE FOURTH GENERATION LANGUAGE,
BUSINESS ENVIRONMENT

ROGER LEE
Central Michigan University
Mount Pleasant, Michigan 48859

WILLIAM LEIGH
University of Central Florida
Orlando, Florida 32816

INTRODUCTION

This paper describes the use of selected object-oriented
software design tools (including the object diagram, the state-
transition diagram, and the use case) in the fourth-generation
language environment of business information systems. A
design tool, the Event/Transition/Object Table, which
integrates state methods with the object diagram, is proposed.
The employed use case format complements the Event/
Transition/Object Table. The described method is presented as
being adequately prescriptive in nature for teaching to
undergraduate systems design students.

The structured design methods comprise the topic of
systems design in many computer information systems
textbooks (for example, 16). Structured design is most
applicable for the design of systems to be implemented in
procedural, third-generation programming languages, such as
COBOL. In software engineering, the structured design
methods have evolved into the object-oriented methods (2, 14)
for the design of software systems, especially for
implementation in object-oriented programming languages,
such as C++. Without modification, neither the structured
design methods nor the object-oriented methods are applicable
to use with the fourth-generation, object-based, high
productivity programming tools which are used with increasing
frequency in business today (7). The object-oriented
approaches are being integrated into the computer information
systems textbooks, but more work is needed in the
development of design methods which are directly applicable
to the fourth-generation language (4GL) tools used in building
business applications.

The application of object-oriented methods to information
systems has been described in other places (for example, 6, 11,
13). This previous work was premised on bringing the whole
mechanism of object-oriented programming to bear on the
information systems problem. This paper concentrates on
identifying only the aspects of the object-oriented methods that
facilitate the implementation of information systems using
4GL, object-based tools, rather than full-blown object-oriented
programming languages.

"The current state of the technology does not define
object-oriented design as one definitive combination of
models, languages, or methods" (9). In practice, object-
oriented design may involve any of the tools described in the
standard texts (2, 10, 14). These methods have been described
as first-generation object-oriented design methods, and authors

Spring 1998

have tailored an object-oriented approach for a particular
problem by selecting a semi-orthogonal set of tools and
modifying them as appropriate (for example, 4). A similar
course is followed in this paper to develop a set of design tools
drawn mainly from the object-oriented family which supports
business systems building with 4GL tools.

THE METHOD

The object-oriented design approach (8) begins by
identifying the objects of the information system and then
captures four types of relationships between the objects (which
become dimensions of the software architecture): 1) logical
static, 2) logical dynamic, 3) physical static, 4) physical
dynamic. The objects in business information systems are the
entities and events of business. Entities include vendors,
invoices, and so forth. Events are the corresponding acts of
doing business: approve vendor, issue invoice, and so forth.

In the methodology described herein the four dimensions
of relationships between these objects are attended to:

1. Modeling of logical static relationships between
objects: information system objects are data entities and
processing events. An object structure diagram (also called a
class diagram) performs this function in most object-oriented
design methodologies. This diagram is a generalization of the
Entity-Relationship Diagram (ERD) (originally proposed in 3,
and related to business applications in 1) from an exclusive
focus on data entities to all entities and events of the system,
and the addition of a class inheritance hierarchy. For 4GL-
implemented business systems, the ERD subset (data objects
and their relationships) is considered to be the proper level of
object structure to be concemed with (5, 16), as the discovery
or programming of classes (as the 4GL is object-based --
implying that new objects and classes cannot be added -- rather
than object-oriented) is not a possibility, and the relationships
between the events in business information systems are highly
structured. This paper will use the object-oriented terminology
for the ERD subset of the object diagram. (See 16 for an
explanation of the correspondence between the object-oriented
and the ERD terminology.)

2. Modeling of logical dynamic interaction within
objects: The state transition diagram (STD) is the standard
object-oriented tool. The described methodology is based on a
realization that business transaction processing events
correspond to transitions between states of an object type.

3. Modeling of physical static relationships between

Journal of Computer Information Systems 93

objects: This refers to the layout of code in modules, the use of
standard functional components (such as the "Form" object in
Microsoft ACCESS) makes this design dimension moot and
given.

4. Modeling of the physical dynamic interaction
between objects: This refers to the process and thread
architecture for the software. This is completely determined by
the 4GL environment and normally may not be modified by
the applications designer at all, so this design dimension is
omitted from this method.

The Event/Transition/Object Table (E/T/O) shown in the
following example integrates the logical static, logical
dynamic, and physical static dimensions by recognizing that
processing events correspond to transitions between states of
an object type and that each processing event must be
implemented by an instantiation of an object of class "Form."
Processing events may be implemented as interactive forms,
requiring entry of the detailed data of the transaction, or they
may be implemented as "batch" forms, the invocation of which
executes a series of SQL (Structured Query Language -- the
standardized relational database language for data definition,
manipulation, and control). This E/T/O is a tabular
representation which is quickly understood, is easy to
synthesize from the object diagram, the STD, and an
understanding of the system to be built. The preparation of the
E/T/O causes the designer to analyze the object diagram and
the STD so as to detect errors or omissions. The E/T/O is easy
to inspect (that is. to "grade") in the instructional setting.

The use case is a tool from the object-oriented family
which helps ground the design in the specifics of reality. The
designer selects or contrives a sequence of example
transactions from the application context to illustrate and test
the design. A portfolio of use case examples is collected as the

design process proceeds.

The format for presentation of the use case in the proposed
method parallels the structure of the E/T/O diagram and can be
used to directly validate the E/T/O. The use case format
requires that the attribute make-up of the data objects be
determined, which is the next step in system design following
the E/T/O, so the use case serves as a design tool, as well as an
illustration and test tool.

Implementation in a 4GL follows directly from the
preparation of the object diagram, the E/T/O, and the use case.
The multiplicities (“cardinalities” in ERD terminology) and
relationships shown on the object diagram and the attribute
information included in the use case translate directly into
SQL Data Definition Language to establish the database (see
17 for specifics of this process). The interactive forms needed
are generated by the 4GL. Additional business rules are
implemented as procedural code attached to form actions.
Other forms are built to directly execute the SQL Data
Manipulation Language for reports and batch updates.

Reports for a system can be added as required. The reports
are derived from the data objects and are easily implemented
using the SQL and report generation tools of a 4GL. Reporting
is well understood and may be addressed as a detail design
activity after the general design is accomplished.

AN EXAMPLE

The object diagram in Figure 1 shows the data entities and
the relationships between them in the example accounts
payable information system. For example, a "ledger account"”
object occurrence is "one-to-many" with a “journal entry”
object occurrence, that is, each ledger account may have up to
many journal entries.

FIGURE 1
Object Diagram for Example Accounts Payable System

OBJECT DIAGRAM:

The STD in Figure 2 shows the dynamic behavior of the
data entities in the object diagram. The "journal entry," "ledger
account,”" and "check" entities each have only one state,
resulting from their respective ‘"create" transitions. The
"invoice” progresses through "open," "approve,” and “paid”
states, resulting from the "create," "approve,” and "pay"
transition.

The relationships between external events, the state
transitions, and the entry, update, or deletion of the data for the
data objects is represented in the E/T/O Table. Each event in

Spring 1998

the E/T/O is implemented as a "form" in the AIS. The event
"Friday Comes" is implemented as a batch processing
execution form (a single button which invokes a processing
stream of SQL, in this case), as the invoices are paid on
Friday: the appropriate entries in the check table are made ("I"
for insert), the invoices are marked paid ("U" for update), and
the journal entry table insertions are made. Other events might
require deletion entries ("D"). Each event on the E/T/O is
implemented as a "logical transaction" for the database
management system.

Journal of Computer Information Systems 94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

FIGURE 2
State-Transition Diagram for Example Accounts Payable System

STD:
entex. approve invoice pay invoice create ledger acct.
invoice \
open approved paid ledger
invoice invoice invoice account
create journal entry create check enter vendor approve vendor

B o i N i
®

disapprove
vendor

FIGURE 3
Event/Transition/Entity Table for the Example Accounts Payable System

A B[Cc[D[E[F[G[H[I]J]K[L|M|N[O
1 |EVENT TRANSITION OBJECT
c c
d By r
liffe e
s|a a|a
ala|t P fst
P plele|p|e j
elplp ni|r c o
nlel vt r bR I |u
Tl o e e i villosiailie e|r
e|v|iv|d|fr|lejufy]|a d|n
et elbig r t g|a
(=10 0 R0 0 s a0 R e| |l |1
O L a8 S n vi|r n
e|lefle vivi|ie|lvic]le e|lv|C
nln|{n|laloflo|{njo|h]ln|a|njo|h
dididlcliji|tlijlefdicit|i}e
o .| iokleonfl el eifieilirilic | efio|ie:lir | el ©
2 rlrlr|t|lelelylelk]r|t|ylelk
3 |New Vendor Received |X |
4 |Vendor Approved X U
5 |Vendor Disapproved X U
6 |New Ledger Account X |
7 |Invoice Received X |
8 |Invoice Approved X |X Uujilu
9 |Friday Comes X X [X Ui]
The use case shown in Fi.gure 4 displays the attribute Table, except that object occurrences, rather than object types,
make-up of some of t'he data objgcts and illustrates the effects are included. Each object occurrence has separate columns for
of example transaction processing on some of the object its attributes so that the history of changes to each data value
occurrences. The format parallels the structure of the E/T/O may be seen in detail.
Journal of Computer Information Systems 95

ol Lalu Zyl_ﬂﬂ

er. Further reproduction prohibited without permissionyzww.manaraa.com

FIGURE 4

Use Case Example

(See Attached for Complete Version)

DESIGN AUDIT

The designer (or instructor) may audit the design and the

Accounting Applications: An Experimental Examination
of Effectiveness,” Journal of Information Systems, 7,
1993, pp. 1-15.

implementation for internal validity and consistency through 2. Booch, G. Object-Oriented Design With Applications,
application of identities between representations: Benjamin/Cummings, 1991.
1) There must be an object column in the E/T/O for 3. Chen, P.O. "The Entity-Relationship Model -- Toward a
each object on the object diagram. Unified View of Data," ACM Transactions on Database
2) There must be a transition column in the E/T/O for Systems, 1, 1976, pp. 546-560.
each transition in the STD. 4. Coleman, D. Object-oriented Development -- The
3) There must be at least one "X" in the E/T/O under Fusion Method, Englewood Cliffs, NJ: Prentice-Hall,
each transition. 1994.
4) There must be at least one "I" in the E/T/O under 5. Davis, J.S. "Teaching a Client/Server Course to Business
each object. Graduate Students,” Journal of Computer Information
5) There must be at least one "X" and at least one Systems, Fall 1996, pp. 42-47.
"I[/U/D" in each row of the E/T/O. 6. Deng, P. and C.L. Fuhr. "Using an Object-Oriented
6) The implementation must have one table for each Approach to the Development of a Relational Database
object on the object diagram. Application System,” Information & Management,
7) The implementation must have one form for each row 1995, pp. 107-121.
of the E/T/O (each event). 7. Douglas, D.E. and P.D. Massey. "Is Industry Embracing
8) An "I" (insert) entry should be first in each object Object-Oriented Technologies?" Journal of Computer
occurrence history column in the use case and a "D" (delete) Information Systems, Spring 1996, pp. 65-72.
should be last, with no Is or Ds in between, only "U"s 8. Holland, IM. and K.J. Liebetherr. "Object-Oriented
(update). Design," ACM Computing Surveys, 1996, pp. 273-275.
This concept of design audit enhances the prescriptive and 9. Hollander, AS., EL. Denna, and J.O. Cherrington.
structured nature of the proposed method. Undergraduates tend Accounting, Information Technology, and Business
to prefer methods based on explicit sets of rules. Solutions, Richard D. Irwin, 1996.
10. Jacobson, 1., M. Christerson, P. Jonsson, and G.
CONCLUSION Overgaard. Object-Oriented Software Engineering: A
o . Use Case Driven Approach, Reading, MA: Addison-
The method is concise and minimalist, applicable to Wesley, 1992.
determining and representing requirements in evolutionary 11. Kandelin, N.A. and T.W. Lin. "A Computational Model of
development, which is the software process model of choice for an Events-Based Object-Oriented Accounting Information
small and medium-sized business system development using System for Inventory Management," Journal of
4GLs (15). The method is complete, in representing the four Information Systems, 1992, pp. 47-62.
dimensions as required. but is structured and prescriptive, 12. McKie, S. "Accounting Objects: Financial Applications
appropriate for introduction and use in an undergraduate Go Object Oriented," DBMS, August 1994, pp. 69-74.
information systems analysis and design course. The method is 13. Murthy, US. and C.E. Wiggins. "Object-Oriented
specialized to the specific needs of business information Modeling Approaches for Designing Accounting
systems development in a fourth generation language context. Information Systems,” Journal of Information Systems,
1993, pp. 97-111.
REFERENCES 14. Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W.
. . . . Lorensen. Object-Oriented Modeling and Design,
1. Amer, T.S. "Entity-Relationship and Relational Database Englewood Cliffs, NJ: Prentice-Hall, 1991.
Modeling Representations for the Audit Review of ’ ’
Spring 1998 Journal of Computer Information Systems 96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

15. Sommerville, 1. "Software Process Models,” ACM Kaufmann, 1994.
Computing Surveys, 1996, pp. 269-271. 17. Yourdon, E. Modern Structured Analysis, Englewood

16. Teory. T.J. Database Modeling and Design, The Cliffs, NJ: Yourdon Press, 1989.
Fundamental Principles, San Francisco: Morgan

Journal of Computer Infermation Systems 97

er. Further reproduction prohibited without permissionyww.manaraa.com

(Junowe xo8Yd ‘Joquinu JopusA 3o8ya) ¥oeyD
(yJunowe Anue eusnol Jequnu yjunoooe Anue feusnofl ‘requinu Aiue feuinol) Aiu3 feusnop
(pred junowe esioAul ‘Junowe 8210AUl ‘(N/A) ¢peAoidde 8d10Aul ‘1equinu 8dI0AU|) 82I0AU|
(@oueleq junodoe ‘uolyduosep JUNOOOe Uequinu JUNodde) JUNoddYy Jebpe]
((N/A) épenoidde sopueA ‘sweu JopusA ‘1equINuU JOPUSA) JOPUBA
:(8nogqe pejeinaiqqe) seinquiy pue sejqe]

98

Journal of Computer Information Systems

0L |€ | ¥oayo ejeald
n a210Aul Aed
|
n
|
n Ajua [euinol ajeaid sawo) AepL4|96/S/L
|
n Anue |euinol ejeasd
n @2]0Aul enoidde paaaiddy esj0nul|96/E/L
| 92]0AU| J8jue PaAlaoay 8210AU|(96/2/L
| “Jooe Jebpe| ajeesd| Junoddy sebpe meN (96/Z/L
a|qeAed sjunodse|QQ| | ‘Jooe Jebpe)| ejeesd| Junoday sebpe] meN |96/Z/L
A n lopuaA aaoidde penciddy sopuep (96/Z/L
N |00 08V|€ | IOpURA Iejus | PaA/eI8y J0puep) MeN (96/L/L
.Eu_tovcg jwe jooe Iqu| juwie jooe iqu| juwe jooe iqu| pred jwe pade qufjeq uopdussep iqu _un_ :o_ﬁtomau_ jqulpade aweu Jqul n/ay/l
¥o8ys| (g)yue uinol| (z) 3us uinol| {}) 13ua uinol aJjoAUl| (ZJjunoooe 1ebpa| (1) unoooe J1abpa| IOpUaA
$32Ua44N220 }93Iq0 uoljisuel | jJuaAng ajeq

ajdwmexy ase) asn
¥ TANO1A

! L—EL I
S
) er. Further reproduction prohibited without permissionywww.manaraa.com

